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• Problematization of the rush for scale and the “foundation models” 
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• Risks associated with large (and ever larger) LLMs


• Evaluation & its prerequisites


• Value sensitive design and techniques for mitigating risk


• Dangers and responsibilities that come with working on a ‘hot topic’





GPU go brrrr

• … and the number goes up.


• But which number?


• Amount of text in the training set


• Compute time


• Benchmark scores (see Raji et al 2021)





From yesterday’s blog post from Pichai of Google







“Against Scale: Provocations and Resistances to 
Scale Thinking” (Hanna & Park 2020)

• “Scale thinking” prioritizes scalability, which in turn requires interchangeability 
of components (including workers) and users


• Hanna & Park ask:


• Does the technological system centralize power (either through 
coordination, data extraction, or authority) or distribute it between 
developers and users?


• Does the technological system treat the contributions and experiences of 
individuals as interchangeable or as uniquely essential?


• Does it open up avenues for participation, and are those avenues of 
participation mobilizing or demobilizing?



“Against Scale: Provocations and Resistances to 
Scale Thinking” (Hanna & Park 2020)

• “Scale thinking” prioritizes scalability, which in turn requires interchangeability 
of components (including workers) and users


• Let’s ask, regarding LLMs:


• Does the technological system centralize power (either through 
coordination, data extraction, or authority) or distribute it between 
developers and users?


• Does the technological system treat the contributions and experiences of 
individuals as interchangeable or as uniquely essential?


• Does it open up avenues for participation, and are those avenues of 
participation mobilizing or demobilizing?
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• Joint work with: Timnit Gebru, Angelina                                                
McMillan-Major, Margaret Mitchell,                                                         
Vinodkumar Prabhakaran, Mark Díaz,                                                              
and Ben Hutchinson 


• Prabhakaran: Prabhakaran et al 2012, Prabhakaran & Rambow 2017, 
Hutchison et al 2020


• Hutchinson: Hutchinson 2005, Hutchison et al 2019, 2020, 2021


• Díaz: Lazar et al 2017, Díaz et al 2018

Slides: https://bit.ly/ParrotsSept2022



We would like you to consider

• Are ever larger language models (LMs) inevitable or necessary?


• What costs are associated with this research direction and what should we 
consider before pursuing it?


• Do the field of natural language processing or the public that it serves in fact 
need larger LMs?


• If so, how can we pursue this research direction while mitigating its 
associated risks?


• If not, what do we need instead?



What are the risks? 

Environmental costs & financial inaccessibility



Environmental and financial costs

• Average human across the globe responsible for 5t of CO2 emissions per year*


• Strubell et al. (2019) 


• Transformer model training procedure on GPUs 284t of CO2 emissions


• 0.1 BLUE score increase en-de results in increase of ~$150,000 in compute cost


• Encourage reporting training time and sensitivity to hyperparameters


• Suggest more equitable access to compute clouds through government 
investment


• Which researchers and which languages get to ‘play’ in this space and who is cut 
out?

*Source: Our World In Data

https://ourworldindata.org/co2-emissions


Current mitigation efforts

• Renewable energy sources


• Still incur a cost on the environment & take away from other potential uses of 
green energy


• Prioritize computationally efficient hardware


• SustainNLP workshop


• Green AI and promoting efficiency as evaluation metric (Schwartz et al 2020)


• Document energy and carbon metrics


• Energy Usage Reports (Lottick et al 2019)


• Experiment-impact-tracker (Henderson et al 2020)



Costs and risks to whom?

• Large LMs, particularly those in English and other high-resource languages, 
benefit those who have the most in society


• Marginalized communities around the world impacted most by climate 
change


• Maldives threatened by rising sea levels (Anthoff et al 2010)


• 800,000 residents of Sudan affected by flooding (7/2020-10/2020)*


• But these communities are rarely able to see benefits of language technology 
because LLMs aren’t built for their languages, Dhivehi and Sudanese Arabic

*Source: https://www.aljazeera.com/news/2020/9/25/over-800000-affected-in-sudan-flooding-un



What are the risks? 

Unmanageable training data



A large dataset is not necessarily diverse

• Who has access to the Internet and is 
contributing?


• Younger people and those from 
developed countries


• Who is being subject to moderation?


• Twitter - accounts receiving death 
threats more likely to be suspended 
than those issuing threats (see also 
Marshall 2021)


• What parts of the Internet are being 
scraped?


• Reddit - US users 67% men and 
64% are ages 18-29 (Pew)


• Wikipedia - only 8.8-15% are 
women or girls


• Not sites with fewer incoming and 
outgoing links, like blogs


• Who is being filtered out?


• Filtering lists primarily target words 
referencing sex, likely also filtering 
LGBTQ online spaces (see also 
Dodge et al 2021)



Static data/Changing social views

• LMs run the risk of ‘value lock’, reifying older, less-inclusive understandings


• Black Lives Matter movement lead to increased number of articles on 
shootings of Black people and past events were also documented and 
updated (Twyman et al 2017)


• But media also doesn’t cover all events and tend to focus on more 
dramatic content


• LMs encode hegemonic views; retraining/fine-tuning would require thoughtful 
curation (see Solaiman and Dennison 2021 for partial proof of concept)


• See also Birhane et al 2021: ML applied as prediction is inherently 
conservative



Bias

• Research in probing LMs for bias has provided a wealth of examples of bias


• See Blodgett et al 2020 for a critical overview


• Documentation of the problem is an important first step, but not a solution


• Automated processing steps may themselves be unreliable


• Probing requires knowing what social categories the LM may be biased 
against


• Need for local input before deployment



Curation, documentation, accountability

• How big is too big?


• Budget for documentation and only collect as much data as can be 
documented


• Documentation: understand sources of bias & potential mitigating 
strategies


• No documentation: potential for harm without recourse


• Documentation debt: datasets both undocumented and too big to document 
post-hoc



What are the risks? 

Research trajectories



Research time is a  
valuable resource

• Focus on LMs and achieving new SOTA                                                           
on leaderboards, particularly NLU


• But LMs have been shown to excel due to spurious dataset artifacts (Niven & 
Kao 2019, Bras et al 2020)


• LMs trained only on linguistic form don’t have access to meaning (Bender & 
Koller 2020)


• Are we actually learning about machine language understanding?



What are the risks? 

Potential harms of synthetic language



We can’t help ourselves

• Human-human interaction is co-constructed and leads to a                      
shared model of the world (Reddy 1979, Clark 1996)


• Text generated by an LM is not grounded in any communicative intent, model 
of the world, or model of the reader’s state of mind


• Counter-intuitive, given the increasing fluency of text synthesis machines, but:


• Have to account for our predisposition to interpret locutionary artifacts as 
conveying coherent meaning & intent (Weizenbaum 1976, Nass et al 1994)



Stochastic !

• An LM is a system for haphazardly stitching together                                     
linguistic forms from its vast training data, without any                        
reference to meaning: a stochastic parrot.


• Nonetheless, humans encountering synthetic text make sense of it


• Coherence is in the eye of the beholder



Potential harms

• Denigration, stereotype threat, hate speech:                                               
harms to reader, harms to bystanders


• Cheap synthetic text can boost extremist recruiting (McGuffie & Newhouse 
2020) 


• LM errors attributed to human author in MT


• LMs can be probed to replicate training data for PII (Carlini et al 2020)


• LMs as hidden components can influence query expansion & results (Noble 
2018)



Potential harms

• These harms largely stem from the interaction of the ersatz                           
fluency of today’s language models + human tendency to attribute meaning 
to text


• Deeply connected to issue of accountability: 


• Synthetic text can enter conversations without anyone being accountable 
for it


• Accountability key to responsibility for truthfulness and to situating meaning


• Maggie Nelson (2015): “Words change depending on who speaks them; there 
is no cure.”



Risk management strategies 



Allocate valuable research time carefully

• Incorporate energy and compute efficiency in planning and model evaluations


• Select datasets intentionally


• ‘Feeding AI systems on the world’s beauty, ugliness, and cruelty, but 
expecting it to reflect only the beauty is a fantasy.’ (Birhane and Prabhu 
2021, after Ruha Benjamin)


• Document process, data, motivations, and note potential users and 
stakeholders


• Pre-mortem analyses: consider worst cases and unanticipated causes


• Value sensitive design: identify stakeholders and design to support their 
values



Risks of backing off from LLMs?

• What about benefits of large LMs, like improved auto-captioning?


• Are LLMs in fact the only way to get these benefits?


• What about for lower resource languages & time/processing constrained 
applications?


• Are there other ways the risks could be mitigated to support the use of LMs?


• Watermarking synthetic text?


• Are there policy approaches that could effectively regulate the use of LLMs?



The view from 2023

• Has the development of LLMs / tech based on LLMs slowed down? (No)


• Has data and model documentation become more mainstream? (Yes, but…)


• Have people become more aware of the risks of this technology? (Yes, but…)



The view from 2023

• Have tech cos cooled down the AI hype? (Of course not)

https://blog.google/products/search/introducing-mum/

See  
Shah & Bender  

2022
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The view from 2023

• Have tech cos cooled down the AI hype? (Of course not)

https://blog.google/products/search/introducing-mum/

https://cohere.ai/

https://ask-rbg.ai/



The view from 2023
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The view from 2023



The view from 2023

• Have tech cos cooled down the AI hype? (Of course not)


• Have people at large become better at critically analyzing claims of 
“understanding language”?


• For more updates: Please join us for Stochastic Parrots Day! 17 March 2023


• 4pm-8pm CET


• https://bit.ly/ParrotsDay23

https://bit.ly/ParrotsDay23
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Back to reality…

• Evaluation is central to


• NLP as science


• NLP as tech development


• Before building anything, plan out evaluation: accuracy, effectiveness, safety


• But all of the above requires knowing:


•   What it's for


•   Who will be affected



Short history of evaluation of LMs 
[some citations needed]

• When LMs were used for smoothing out the output of acoustic models and 
translation models


• Intrinsic evaluation: Perplexity


• Extrinsic evaluation: WER, BLEU


• Then Bolukbasi et al 2016, Caliskan et al 2017: Evaluating word embeddings for 
bias


• Then the metric becomes a goal … see Gonen & Goldberg 2019


• Word embeddings and then LMs evaluated with benchmarks like GLUE (e.g. Devlin 
et al 2019)  — see Raji et al 2021



So, what are LLMs for?

• I’ve seen a lot of bad ideas:


• LLMs as search engines


• LLMs as robo-lawyers


• LLMs as psychotherapists


• LLMs as diagnostic machines


• LLMs as stand-ins for human subjects in political science surveys

https://bit.ly/MAIHT3k



So what are LLMs for?

• What are some good ideas?


• Use cases where:


• What matters is language form (content is unimportant or otherwise 
handled)


• Ersatz coherence won’t be misleading


• Problematic biases/hateful content can be identified and filtered
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From value sensitive design: 
Stakeholder analysis

• Direct stakeholders: people who use the technology or are involved in its 
development


• Indirect stakeholders: people who are affected by others’ use or development 
of that technology


• Who are the direct stakeholders for large language models?


• Who are the indirect stakeholders?



From value sensitive design: 
Stakeholder analysis

• Direct stakeholders: people who use the technology or are involved in its 
development


• Indirect stakeholders: people who are affected by others’ use or development 
of that technology


• Think of a specific use case for large language models?


• Who are the direct stakeholders for that technology?


• Who are the indirect stakeholders?



Envisioning cards (Friedman et al 2011)

• Sticking with the use cases you thought of for the previous slide


• Discuss with your partner the prompt on your envisioning card


• How does that inform how you might evaluate technology for your use case?


• How does that inform how you might evaluate LLMs? 



Dataset documentation: Data Statements v2

• Risk mitigation often requires knowledge of what’s in a dataset


• Is this a good match for my use case?


• How might it go wrong?


• 2017: Multiple sites start creating documentation tool kits


• For language data: Data statements (Bender & Friedman 2018)


• v2 + best practices guide: http://techpolicylab.uw.edu/data-statements/ 
(Bender et al 2021, McMillan-Major et al forthcoming)

http://techpolicylab.uw.edu/data-statements/


Dataset documentation: Data Statements v2
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Dangers and opportunities

• We're not off in a corner ivory tower working on theoretical things


• How we talk about what we do matters:


• In publications and blog posts


• To our university PR services


• To the media


• Opt in to this, if you have time and energy. We need more experts 
willing to push back against the hype.



Dangers and opportunities

• Corporate entities may well pick up what we develop


• Write thoughtful “ethical considerations” sections


• Seek chances to inform policy makers


• And point to the ethical considerations



Thank you!

• Problematization of the rush for scale and the “foundation models” 
conceptualization


• Risks associated with large (and ever larger) LLMs


• Evaluation & its prerequisites


• Value sensitive design and techniques for mitigating risk


• Dangers and responsibilities that come with working on a ‘hot topic’
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• https://www.maxpixel.net/Bird-Red-Parrot-Animal-Fly-Vintage-Wings-1300223

• https://www.maxpixel.net/Parrots-Parrot-Birds-Isolated-Plumage-Branch-Bird-2850879

• https://www.maxpixel.net/Tropical-Animal-World-Bill-Parrot-Cute-Bird-Ara-3080543
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• https://www.maxpixel.net/Tropical-Ara-Bird-Feather-Exotic-Bill-Parrot-3064137

• https://www.maxpixel.net/Plumage-Colorful-Exotic-Birds-Ara-Parrot-5202301

• https://www.maxpixel.net/Flight-Parrots-Parrot-Isolated-2683451
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