LLMs for every language

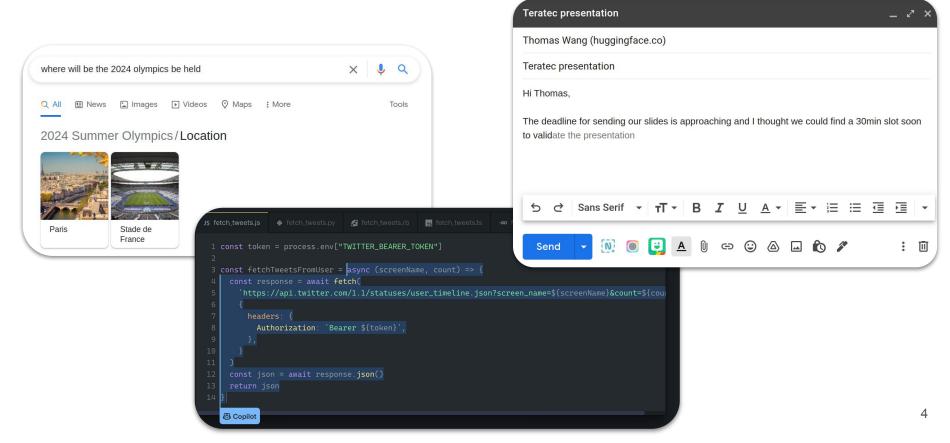
A how-to guide

BigScience Collaboratively training a large multilingual language model

Teven Le Scao

What motivated us to do BigScience?

Language models



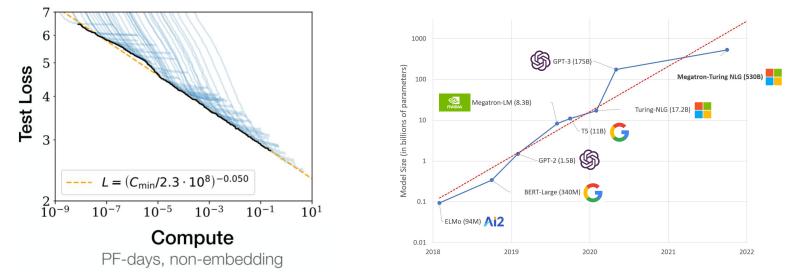
Language models

Are language models useful?

S

Yes, language models are useful for a variety of tasks in natural language processing (NLP), such as machine translation, speech recognition, and text summarization. These models are trained to understand and generate natural language, which allows them to perform tasks that involve understanding and generating human-like text. For example, a language model could be used to automatically generate human-like text responses to customer inquiries, or to help a machine translation system produce accurate and fluent translations. Additionally, language models can be used to improve the performance of other NLP models by providing them with a better understanding of the structure and nuances of natural language.

Scaling



GPT-3's generation example:

[...]

To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:

One day when I was playing tag with my little sister, she got really excited and she started doing these crazy farduddles.

Access

Training cost

- typically \$2-5M
- million of gpu hours

Closed access for most of them

VB VentureBeat

Naver trained a 'GPT-3-like' Korean language model Naver claims the system learned 6,500 times more Korean data than OpenAl's ... Some experts believe that while HyperCLOVA, GPT-3, PanGu-a, ... 1 Jun 2021

TechCrunch

Anthropic is the new AI research outfit from OpenAI's Dario Amodei, and it has \$124M to burn

Anthropic, as it's called, was founded with his sister Daniela and its goal is to create "large-scale AI systems that are steerable, ... 28 May 2021

VB VentureBeat

Al21 Labs trains a massive language model to rival OpenAl's GPT-3

"Al21 Labs was founded to fundamentally change and improve the way people read and write. Pushing the frontier of language-based Al requires ... 1 month ago

FC Fast Company

Ex-Googlers raise \$40 million to democratize language AI

This story has been updated with more information about Cohere's approach to responsible AI. About the author. Fast Company Senior Writer Mark ... 2 days ago

BigScience

"During **one-year**, from May 2021 to May 2022, 1000+ researchers from 60 countries and more than 250 institutions are **creating together a very large multilingual neural network language model** and a **very large multilingual text dataset** on the 28 petaflops Jean Zay (IDRIS) supercomputer located near Paris, France.

During the workshop, the participants plan to investigate the dataset and the model from all angles: bias, social impact, capabilities, limitations, ethics, potential improvements, specific domain performances, carbon impact, general Al/cognitive research landscape."

Spirit of the project

Make LLM research accessible

- Open-source, open-access
- Organize research around the models
- Make compute accessible

Create and share knowledge around the process

- Train in the open
- Freely discuss engineering problems and solutions

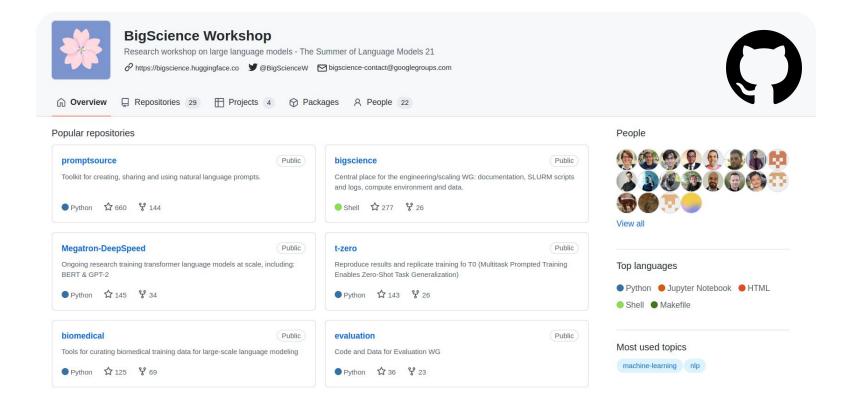
Artifacts: what came out of BigScience? (0/4)

from transformers import AutoModel, AutoTokenizer

model_name = "bigscience/bloom"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)

https://huggingface.co/bigscience/bloom

Artifacts: what came out of BigScience? (1/4)



What Language Model to Train if You Have One Million GPU Hours?

The BigScience Architecture & Scaling Group

Teven Le Scao^{1*} Thomas Wang^{1*} Daniel Hesslow^{2*} Lucile Saulnier^{1*} Stas Bekman^{1*} M Saiful Bard³ Stella Biderman^{5.5} Hady Eshahar⁶ Jason Phang⁷ Oft Press⁶ Colin Raffel¹ Victor Sanh¹ Sheng Shen⁹ Lintang Sutawika¹⁰ Jaesung Tae¹ Zheng Xin Yong¹¹ Julien Launav^{2,121} Iz Beltaev¹³¹

¹ Hugging Face ² LightOn ³ NTU, Singapore ⁴ Booz Allen ⁵ EleutherAI ⁶ Naver Labs Europe ⁷ New York University ⁸ University of Washington ⁹ Berkeley University ¹⁰ Big Science ¹¹ Brown University ¹² LPENS ¹³ Allen Institute for AI

MULTITASK PROMPTED TRAINING ENABLES ZERO-SHOT TASK GENERALIZATION

Leo Gao

EleutherAI

Victor Sanh* Hugging Face		t Webson Universi			Raffel* ng Face		e phen H. Bach* own & Snorkel AI
Lintang Sutawika BigScience	a Zaid Aly KFUPM		Antoine C IRISA & II			aud Stiegler erscience	Teven Le Scao Hugging Face
Arun Raja	Manan Dey	M Saif	ıl Bari	Canw	en Xu	I	Jrmish Thakker
I ² R, Singapore	SAP	NTU, S	ingapore	UCSD	& Huggi	ng Face S	SambaNova Systems
Shanya Sharma	Eliza Szcz	echla 1	aewoon K	im	Gunjan	Chhablani	Nihal V. Nayak
Walmart Labs	BigScience	1	/U Amsterd	lam	BigScien	ce	Brown University
Debajyoti Datta	Jonath	an Chang	Mike T	'ian-Jiar	Jiang	Han Wang	Matteo Manica
University of Virgi	nia ASUS		ZEALS	, Japan		NYU	IBM Research
	Zheng-Xin Ye Brown Univer		arshit Pan igScience	dey	Michael Parity	McKenna	Rachel Bawden Inria, France
Thomas Wang	Trishala Nee	rai Jos	Rozen		Abheesh	t Sharma	Andrea Santilli
Inria, France	BigScience	Nav	er Labs Eu	rope	BITS Pil	ni, India	University of Rome
ters: and Tokenization	n in NLP	lan Fries & Snorke	ΔΙ	Ryan T Charles	eehan River Ar	alutics	Tali Bers Brown University

leling methods cture has been a well-motivated transfer across impact of modthe emergence ameters models, reasingly expentrain. Notably, how modeling ent capabilities, ise mainly from ingual language s scale, our goal nd training setup 1.00 llv

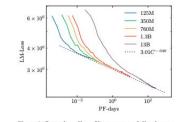


Figure 1: Smooth scaling of language modeling loss as compute budget and model size increase. We observe a power-law coefficient $\alpha_C \sim 0.046$, in-line with pre-

What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?

The BigScience Architecture & Scaling Group

Thomas Wang¹⁺ Adam Roberts²⁺ Daniel Hesslow³ Teven Le Scao¹ Hyung Won Chung² Iz Beltagy⁴ Julien Launay^{3,5†} Colin Raffel^{1†}

¹ Hugging Face ²Google ³LightOn ⁴Allen Institute for AI ⁵LPENS, École Normale Supérieure

Abstract

Large pretrained Transformer language models have been shown to exhibit zeroshot generalization, i.e. chey can perform a wide variety of tasks that they were not explicitly trained on. However, the architectures and pretraining objectives used across state-of-the-art models differ significantly, and there has been limited systematic comparison of these factors. In this work, we present a large-scale evaluation of modeling choices and their impact on zero-shot generalization. In particular, we focus on text-to-text models and experiment with three model architectures (causal/non-causal decoder-only and encoder-decoder), trained with two different pretraining objectives (autoregressive and masked language modeling), and evaluated with and without multitask prompted finetuning. We train

and so on. This study attempts to identify the publicly available Arabic NLP datasets and to provide a catalogue of Arabic datasets to researchers. The catalogue will increase the discoverability and provide some key metadata that will help researchers identify the most suitable dataset for their research questions.

Artifacts: what came out

of BigScience? (2/4)

Masader: Metadata Sourcing for Arabic Text and Speech Data Resources

Zaid Alvafeai¹, Maraim Masoud², Mustafa Ghaleb¹, and Maged S. Al-shaibani¹

¹ King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

² Independent Researcher

Abstract

The NLP pipeline has evolved dramatically

in the last few years. The first step in the

pipeline is to find suitable annotated datasets

to evaluate the tasks we are trying to solve.

Unfortunately, most of the published datasets

lack metadata annotations that describe their

attributes. Not to mention, the absence of a

public catalogue that indexes all the publicly

available datasets related to specific regions or languages. When we consider low-resource di-

alectical languages, for example, this issue be-

comes more prominent. In this paper we cre-

ate Masader, the largest public catalogue for

Arabic NLP datasets, which consists of 200 datasets annotated with 25 attributes. FurtherBetween words and characters:

A Brief History of Open-Vocabulary Modeling and Tokenization in N

 Sabrina J. Mielke
 1.2
 Zaid Alyafeai
 Elizabeth Salesky
 1

 Colin Raffel
 Manan Dey
 Matthias Gallé
 Arun Raja 6

 Chenglei Si 7
 Wilson Y. Lee
 Benoît Sagot 9
 Samson Tan ¹⁰⁺

 BigScience Workshop Tokenization Working Group
 BigScience Workshop Tokenization Working Group
 Samson Tan ¹⁰⁺

¹Johns Hopkins University ²HaggingFace ³King Fahd University of Petroleum and Minerals ⁴SAP ⁵Naver Labs Europe ⁶Institute for Infocomm Research, A*STAR Singapore ⁷University of Maryland ⁸BigScience Workshop ⁹Inira Paris ¹⁰Salesforce Research Asia & National University of Singapore ⁵ jm 6 ± jm 6 ± ke, com

Abstract

What are the units of text that we want to model? From bytes to multi-word expressions, text can be analyzed and generated at many granularities. Until recently, most operated over words, treating those as discrete and atomic tokens, but starting with byte-pair encoding (BPE), subword-based approaches have become dominant in many areas, enabling small vocabularies while still allowing for fast inference. Is the end of the read character-level model or byte-level processing? In this survey, we connect several lines of work from the pre-neural and neual era, bys howing how hybrid approaches

requiring		en / learned	decompose maximally
knowledge / based on linguistic concepts	hierarchical or segmental neural LMs	SentencePiece impl. of BPE & Unigram LM	Characters Bytes Rendered Pixels
Manually created morphl analyzers	Linguistica Morfessor	orig. BPE, WP & Unigram LM	assumes words are provided
Pretokenizers like Moses' tokenize.pl	Bayesian Nonparam. for word acquisition	space- or punctuation- splitting	claims to find words

Figure 1: A taxonomy of segmentation and tokenization algorithms and research directions

s have recently been shown to attain reasonable zero-shot erse set of tasks (Brown et al., 2020). It has been hypotheequence of implicit multitask learning in language models'

ABSTRACT

Thomas Wolf

Hugging Face

Alexander M. Rush

Hugging Face

t al., 2019). Can zero-shot generalization instead be directly altitask learning? To test this question at scale, we develop anning any natural language tasks into a human readable.

And many mores..

Artifacts: what came out of BigScience? (3/4)

BigScience RAIL License v1.0

This is the home of the BigScience RAIL License v1.0.If you would like to download the license you can get it as <u>.txt</u>, <u>.docx</u>, or <u>.html</u> file.

https://huggingface.co/spaces/bigscience/license

Artifacts: what came out of BigScience? (4/4)

...

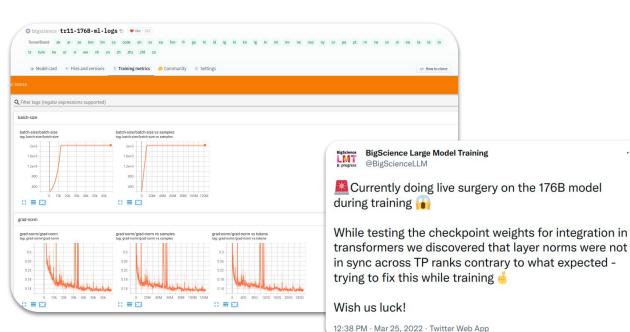
0

The embed matrix with 250k multi-lingual vocab is on par in size with the transformer block, so rebalancing the pipeline to count embedding matrices as transformer blocks leads to even faster throughput and less memory usage on ranks 0 and -1

Benchmarks:

bigscience/chronicles-prequel.md at master - bigscience-workshop/bigscience Central place for the engineering/scaling WG: documentation, SLURM scripts and logs, compute environment and data. - bigscience/chronicles-prequel.md a...

6:34 AM · Mar 4, 2022 · Twitter Web App



https://huggingface.co/bigscience/tr11-176B-ml-logs

https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md

Training a 176B model

Jean Zay

This work was granted access to the HPC resources of *Institut du développement et des ressources en informatique scientifique* (IDRIS) du *Centre national de la recherche scientifique* (CNRS) under the allocation 2021-A0101012475 made by *Grand équipement national de calcul intensif* (GENCI) - Thank you!

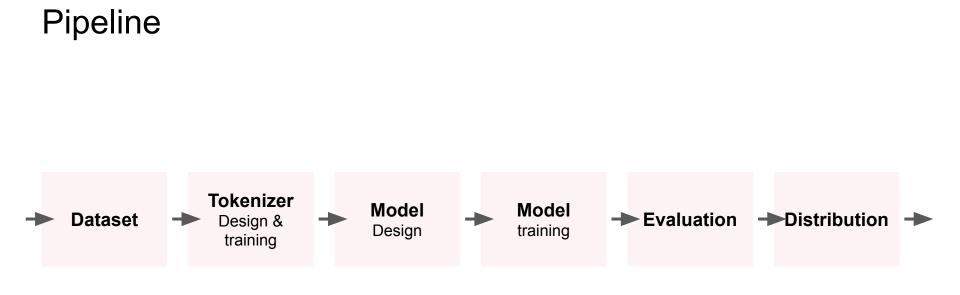
Compute grant:

- 2.5M V100 hours
- 1.25M A100 hours: a reserved allocation of 416 A100 (80GB)
- and a ton of CPU

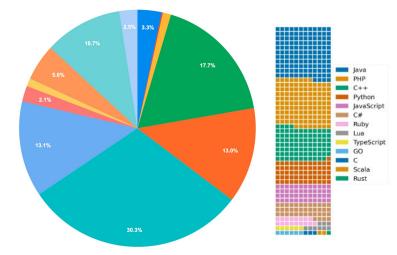
Technical support - Thanks Rémi Lacroix!

INSTITUT DU Développement et des Ressources en Informatique Scientifique

: GENCI



Dataset: 1.6T multilingual



- Arabic (3,3%)
- Basque (0,2%)
- Catalan (1,1%)
- Chinese (17,7%)
- Code (13%)
- English (30,3%)

- French (13,1%)
- Indic (2,1%)
- Indonesian (1,1%)
- Niger Congo (0,03%)
- Portuguese (5%)
- Spanish (10,7%)
- Vietnamese (2,5%)

https://openreview.net/forum?id=UoEw6KigkUn

Sources: catalogue

Crowdsourced multilingual datasets from BigScience participants

~60% of data in tokens

Lessons:

- Some filtering and deduplication required, lots of templates to remove
- A lot of those are *not* clean
- LMs require specific corpora: unsupervised, diverse text with long documents

Web crawl

Our filtered and deduped version of OSCAR-v1

~35% of data in tokens

Lessons:

- Heavy filtering needed, but you can find good data
- Hard to assess deduplication at TB-scale

Web crawl filtering

7 simple filters

AR	EU	BN	CA	ZH	EN	FR	HI	ID	PT	UR	VI	ES
20.3	5.2	48.8	21.1	23.1	17.2	17.0	25.7	10.4	12.6	15.8	21.3	16.9

Table 1: Percentage of documents removed by the filtering per language (ISO 639-1 code).

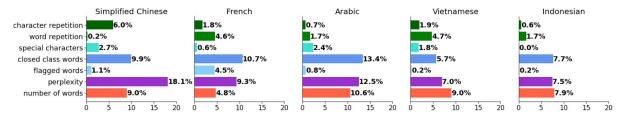


Figure 3: Percentage of documents discarded by each filter independently for 5 languages

Sources: pseudo-crawl

List of domains from native speakers, corresponding Common Crawl WARC files

5% of data

Lessons:

- Doing your own WARC parsing is rewarding but a project in itself
- We probably should have crawled the sites directly
- Tons of processing/deduplication/template removal needed

Deduplication

For catalogue and pseudo-crawl

- Line by line within every document
- Across all documents

And for the web crawl:

- MinHash near-dedup (0.7% of data removed, wary of false +)
- Suffix tree exact dedup over long documents (21.67% duplication, stringent)

Tokenizer choices

Metric: fertility

- Minimize vocab size
- Minimize tokens per byte of text

Tokenizer choices

Objective: no more than 10%+ fertility compared to monolingual tokenizers

Reached at 250k tokens

Tokenizer	fr	en	es	zh	hi	ar
Monolingual	1.30	1.15	1.12	1.50	1.07	1.16
BLOOM	1.17 (-11%)	1.15 (+0%)	1.16 (+3%)	1.58 (+5%)	1.18 (+9%)	1.34 (+13%)

Table 2: Fertilities obtained on Universal Dependencies treebanks on languages with existing monolingual tokenizers. The monolingual tokenizers we used were the ones from CamemBERT (Martin et al., 2020), GPT-2 (Radford et al., 2019), DeepESP/gpt2-spanish, bert-base-chinese, monsoon-nlp/hindi-bert and Arabic BERT (Safaya et al., 2020), all available on the HuggingFace Hub.

Lessons:

- Weird tokens (e.g. URLs) are good indicators of training data pathologies
- Massively multilingual vocabs are hard... Still messed up for Devanagari

GPT-style autoregressive

RESEARCH

Democratizing access to large-scale language models with OPT-175B

May 3, 20

Google Al Blog

The latest from Google Research

Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance Monday, April 4, 2022

An empirical analysis of compute-optimal large language model training

Publication

Download View publication

Announcing Al21 Studio and Jurassic-1 Language Models

Al21 Labs' new developer platform offers instant access to our 178Bparameter language model, to help you build sophisticated text-based Al applications at scale

• Research

Language modelling at scale: Gopher, ethical considerations, and retrieval

December 8, 2021

YUAN 1.0: LARGE-SCALE PRE-TRAINED LANGUAGE MODEL IN ZERO-SHOT AND FEW-SHOT LEARNING

Shaohua Wu*	Xudor	ng Zhao	Tong Yu
Rongguo Zhang	Chong Shen	Hongli Liu	Feng Li
Hong Zhu	Jiangang Luo	Liang Xu	Xuanwei Zhang

Announcing GPT-NeoX-20B

Announcing GPT-NeoX-20B, a 20 billion parameter model trained in collaboration with CoreWeave. February 2, 2022 - Connor Leahy

Code stack

~checkpoints/tr11-176B-ml/checkpoints/main> du -h global_step63600/
2.3T global_step63600/

XIncluding optimizer states and checkpoints

Code stacks I would use now

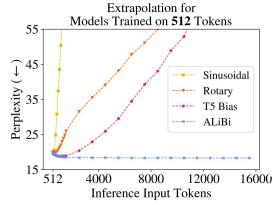
- If you have high interconnect

- If not

- If you have TPUs

Modeling adjustments

• ALiBi positional embeddings which allow long-sequence extrapolation



Positional Embedding	Average EAI Results
None	41.23
Learned	41.71
Rotary	41.46
ALiBi	43.70

Table 2: ALiBi significantly outperforms other embeddings for zero-shot generalization. All models are trained on the OSCAR dataset for 112 billion tokens.

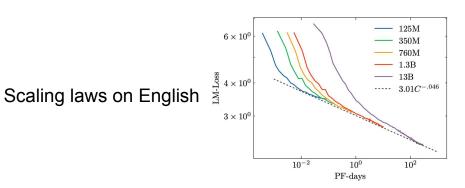
• **Embed LayerNorm** for stability (there's a perf tradeoff though!)

Scaling

Compute (total operations) = k * Data * Parameters

As C (compute) goes up, how much should go into D (data size) vs N (params)?

Scaling



Model	Size [Bparams.]	Pretraining [Btokens]	Budget [PF-days]	Layers	Hidden dim.	Attention num.	on heads dim.
LaMDA (Thoppilan et al., 2022)	137	432	4,106	64	8,192	128	64
GPT-3 (Brown et al., 2020)	175	300	3,646	96	12,288	96	128
J1-Jumbo (Lieber et al., 2021)	178	300	3,708	76	13,824	96	144
PanGu- α (Zeng et al., 2021)	207	42	604	64	16,384	128	128
Yuan (Wu et al., 2021)	245	180	3,063	76	16,384		
Gopher (Rae et al., 2021)	280	300	4,313	80	16,384	128	128
MT-530B (Smith et al., 2022)	530	270	9,938	105	20,480	128	160

arxiv.org/abs/2001.08361

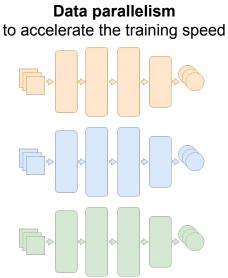
arxiv.org/abs/2006.12467

					13	OB						6B					25	0B
						ailability					pute ava							ailability
1	50 %	60 % 20	20 %	80 % 27	90 % 30	100 % 33	50 12	60%	70 %	80 %	90 %	100 %	50 %	60 %	70 %	80 %	90 %	100 %
2	33	40		54	60	67	25	30	35	40	45	49	9	10	12	14	16	17
3	50	60	79	80	90	100	20	45	8	59		24	17 26	21	24	28	31 47	35
4	67	80	25	107	121	134	45	59	69	29	89		29	31 42	37	42	63	52
5	54	100	117	114	151	167	62	24	87			125	35	52	61	20	78	57
	100	121	141	161	181	201	24	89	104	119	134	168	52	61	73		94	105
,	117	341	164	158	211	234	87	104	121	139	156	173	60	73	85	98	110	122
8	134	361	188	214	241	268	55	119	139	158	178	198	70	84	98		125	139
9	151	181	211	241	271	301	11	134	156	178	200	223	78	24	110	125	141	157
10	387	201	234	258	301	335	120	148	173	198	223	247	87	105	122	139	157	176
1	184	221	258	295	332	368	130	163	191	218	245	272	95	115	134	153	172	192
2	201	241	281	322	362	402	144	178	208	238	267	297	105	125	146	167	188	209
13	218	261	305	348	392	435	15	193	225	257	289	322	113	136	159	181	204	226
14	234	281	328	375	422	469	17.	208	242	277	312	346	122	146	171	195	219	264
15	251	301	352	402	452	502	10	223	260	297	334	371	131	157	183	209	235	261
16	268	322	375	429	482	536	190	238	277	317	356	396	139	167	195	223	251	279
17	285	342	399	456	512	569	21	252	294	336	379	421	148	178	207	237	266	296
18	301	362	422	482	543	603	22	267	312	356	401	445	157	188	219	251	282	314
19	318	382	445	509	573	636	23	282	329	376	423	470	165	199	232	265	298	331
20	335	402	469	536	603	670	24	297	346	396	445	495	134	209	244	279	314	348
21	352	422	492	563	633	703	26		364	415	463	520	183	219	256	293	329	365
22	368	442	516	590	663	237	27.	327	381	435	490	544	192	230	268	307	345	383
23	385	462	539	675	693	770	28	341	398	455	512	569	200	240	280	320	361	401
24	492	482	563	643	724	804	29	356	416	475	534	594	209	251	293	334	376	418

Fixed budget scenarios for different model sizes

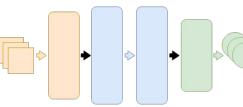
Model	Size	Layers	Hidden dim.	Attenti	Attention heads		Perfor	mance
	[params.]			num.	dim.	[GB]	[sec/iter.]	[TFLOPs]
(1)	178	82	12 210	64	208	63	104	152
(2)	178	82	13,312	128	104	60	109	146
(3)	176	70	14,336	112	128	59	105	150

Engineering constraints



Each device has a replica of the model and receives a different batch of training data on which it performs a forward and backward pass Model parallelism to train models that don't fit in the memory of one device

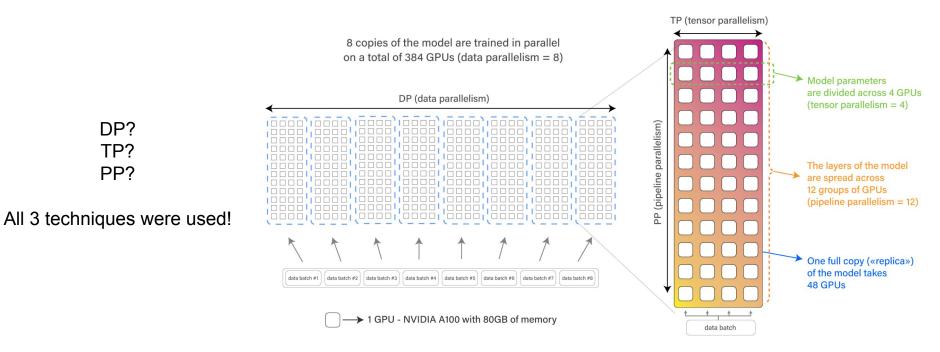
Pipeline parallelism



Tensor parallelism

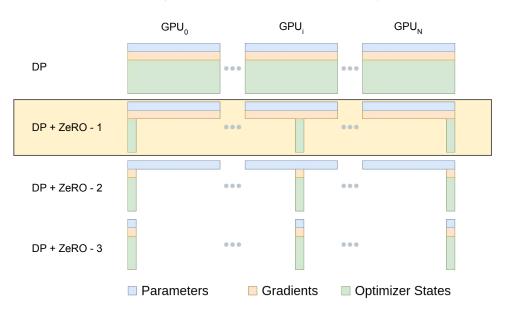
Only one or several consecutive layers of the model are placed on a single GPU Each tensor is divided into several pieces so that instead of having the whole tensor residing on a single GPU each piece of the tensor resides on a different GPU

Parallelism:



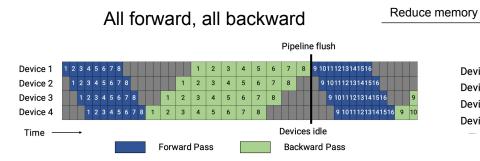
ZeRO data parallelism

- instead of replicating everything each GPU stores only a slice of it
- free the GPUs for larger batch sizes or more layers



Memory Co	Memory Consumption								
Formulation	Specific Example K=12 Ψ=7.5B Nd=64	Volume							
$(2+2+K)*\Psi$	120GB	1x							
$2\Psi + 2\Psi + \frac{K*\Psi}{N_d}$	31.4GB	1x							
$2\Psi + \frac{(2+K)*\Psi}{N_d}$	16.6GB	1x							
$\frac{(2+2+K)*\Psi}{N_d}$	1.9GB	1.5x							

Pipeline scheduling

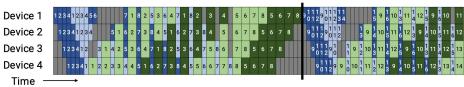


The one we used

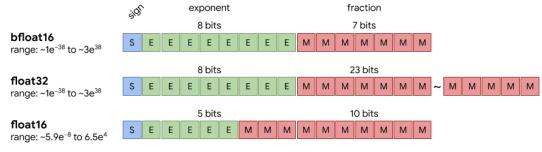
One forward, one backward (1f1b)

Reduce bubble at the cost of communication

Interleaved 1f1b



BF16



Source: https://moocaholic.medium.com/fp64-fp32-fp16-bfloat16-tf32-and-other-members-of-the-zoo-a1ca7897d40

Stas Bekman @StasBekman

[1/2] What makes the @BigScienceLLM 176B-ml training so stable?

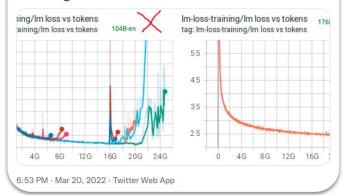
The 176B-ml succeeded to cross the 24B-token barrier whereas 104B-en failed.

...

36

We would love to hear your speculative and experiential reasoning for why this is so!

Following are the main candidates:



Evaluation: is hard

Extrinsic Evaluation: Focus on downstream, user-facing tasks

Intrinsic Evaluation: Focus on encoding of linguistic and world knowledge

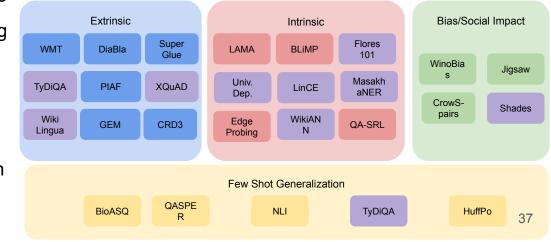
G Bias/Social Impact: Quantify encoding of stereotypes and risk of user harm

Multilingualism: Ensure coverage of training and unseen language in all evaluations

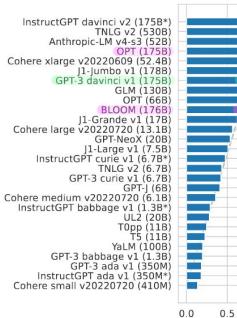
Few-Shot Generalization: Focus on evaluation on distributions not seen in pretraining

bigscience-workshop / promptsource Public EleutherAl / Im-evaluation-harness Public Benchmark

Code Bases



After training



Accuracy ↑

1.0

In 2022, open source was ~1.5 years behind closed-source

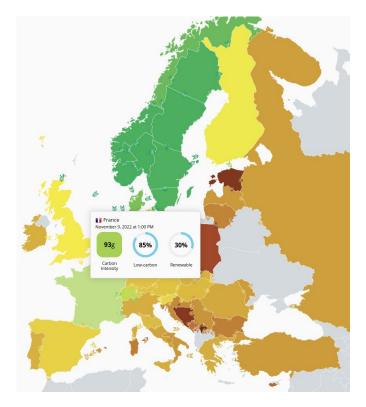
Zero-shot

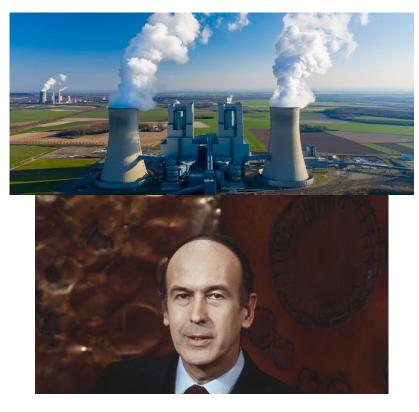
Checkpoint: 65k steps (240B tokens)

To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:

We were on a Kindrex toyshop hop and we got to see if Kindrex toys were built to withstand constant jumping, lots of jumping! To do this part, I had to farduddle to simulate jumping. Prompt Generated

Carbon footprint





ESTIMATING THE CARBON FOOTPRINT OF BLOOM, A 176B PARAMETER LANGUAGE MODEL

Sylvain Viguier

Graphcore

Carbon footprint

Alexandra Sasha Luccioni Hugging Face sasha.luccioni@hf.co sylvainv@graphcore.ai

Anne-Laure Ligozat LISN & ENSILE anne-laure.ligozat @lisn.upsaclay.fr

Model name	Number of parameters	Datacenter PUE	Carbon intensity of grid used	Power consumption	CO ₂ eq emissions	CO ₂ eq emissions × PUE
GPT-3	175B	1.1	429 gCO2eq/kWh	1,287 MWh	502 tonnes	552 tonnes
Gopher	280B	1.08	330 gCO2eq/kWh	1,066 MWh	352 tonnes	380 tonnes
OPT	175B	1.092	231gCO2eq/kWh	324 MWh	70 tonnes	76.3 tonnes 3
BLOOM	176B	1.2	57 gCO2eq/kWh	433 MWh	25 tonnes	30 tonnes

~ 20 Paris <-> NYC return trips

Example generations

A poem about the Large Hadron Collider by Alfred Tennyson. Title: The Particle at the End of the Universe

The mindless swarm that fills the void, The blind, unthinking, purposeless crowd Of atoms, blindly rushing to their doom, With never a thought of what they are or why, Or whence they came, or whither they must go; This is the end of all we see and know,

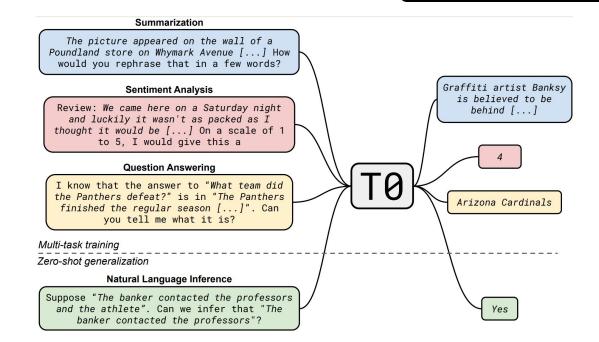
Hark! from the abyss there comes a sound As of a mighty wind that shakes the ground, A sound of rending, tearing, crashing sound, As if the solid earth were rent in twain, And all the elements in wild uproar Were hurled together in a chaotic storm;

And then a pause, and then again The sound as of ten thousand thunders rolled Upon the startled ear of night, Then silence استخراج العدد العاملي في لغة بايثون: def factorial(n): if n == 0: return 1 else: result = 1 for i in range(1, n + 1): result *= i return result Traduce español de España a español de Argentina El coche es rojo - el auto es rojo El ordenador es nuevo - la computadora es nueva el boligrafo es negro - lapicera es negra la nevera - heladera los zapatos - zapatillas las gafas - anteojos

176B params 59 languages Open-access

BL & mT *

Multi-task fine-tuning



Code models

BigCode is an open scientific collaboration working on the responsible development of large language models for code

Learn more...

Supported by:

https://www.bigcode-project.org/

Monolingual EU LMs?

Scaling

Compute (total operations) = k * Data * Parameters

As C (compute) goes up, how much should go into D (data size) vs N (params)?

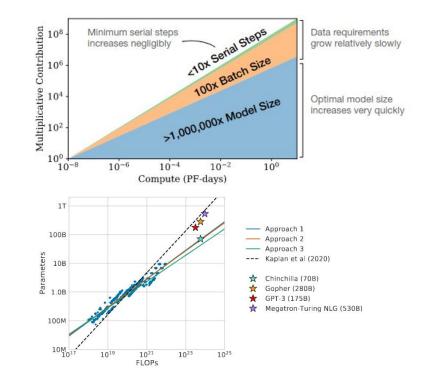
The scaling controversy

Kaplan '20:

$$D \sim C^{0.27}$$
, $N \sim C^{0.73}$

Hoffman '22:

 $D \sim C^{0.50}$, $N \sim C^{0.50}$



BLOOM: 384 A100s for 111 days

-> 5.5E+23 operations

Chinchilla optimality:

59B parameters, for 1,18T tokens

BLOOM:

176B parameters, for 366B tokens

So where do you find 1T tokens? ~4TB text, 800B words.

So where do you find 1T tokens? ~4TB text, 800B words.

- Even in English, finding 1T quality tokens is non-trivial
- Norwegian OSCAR: 2.8GB

So where do you find 1T tokens? ~4TB text, 800B words.

- Even in English, finding 1T quality tokens is non-trivial
- Norwegian OSCAR: 2.8GB

Libraries, silver bullet? The French National Library contains roughly 800B words

Our current work

Niklas Muennighoff, HF

Nouamane Tazi, HF

Sampo Pyysalo, Turku

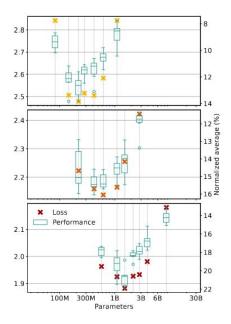
Thom Wolf, HF

Ola Piktus, HF

Teven Le Scao, HF

Val loss vs downstream zero-shot perf

Chinchilla-optimal models for loss are also optimal for 0-shot performance.



Is repeating data bad?

Validation loss: yes

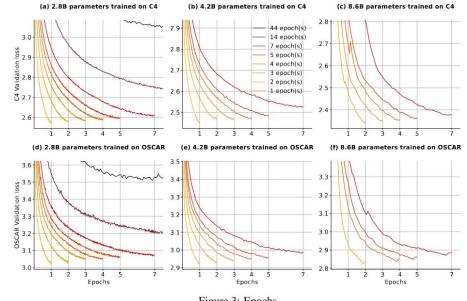
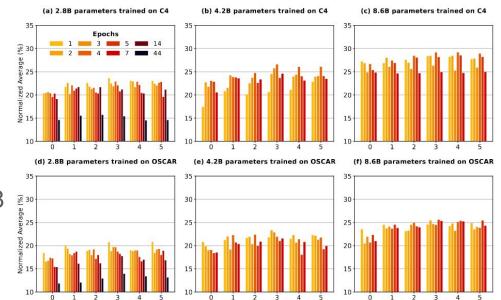


Figure 3: Epochs

Is repeating data bad?

Zero- or few-shot downstream perf:

Not really.....



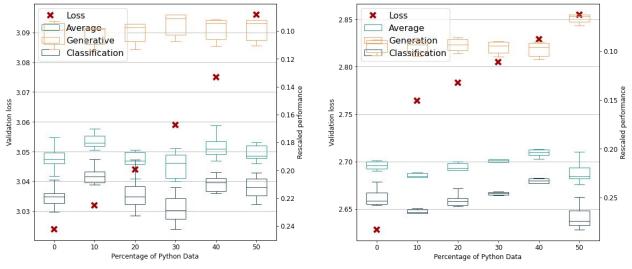
Fewshots

Fewshots

Fewshots

Adding code data

50% Python data: no difference



Would it work for non-en languages?

Multilinguality: when does it help?

Scaling Laws for Generative Mixed-Modal Language Models

Armen Aghajanyan*[†], Lili Yu*[†], Alexis Conneau[†], Wei-Ning Hsu[†]

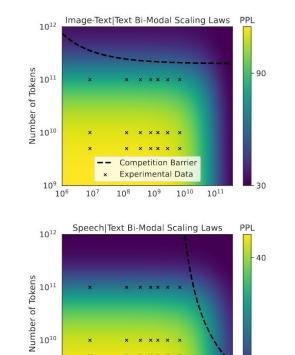
Karen Hambardzumyan[◊], Susan Zhang[†], Stephen Roller[†], Naman Goyal[†]

Omer Levy[†] & Luke Zettlemoyer^{†,♡}

FAIR[†], University of Washington[♡], YerevaNN[◊] armenag@meta.com

ABSTRACT

Generative language models define distributions over sequences of tokens that can represent essentially any combination of data modalities (e.g., any permutation of image tokens from VQ-VAEs, speech tokens from HuBERT, BPE tokens for language or code, and so on). To better understand the scaling properties of such mixed-modal models, we conducted over 250 experiments using seven different modalities and model sizes ranging from 8 million to 30 billion, trained on 5-100 billion tokens. We report new mixed-modal scaling laws that unify the contributions of individual modalities and the interactions between them. Specifically, we explicitly model the optimal synergy and competition due to data and model size as an additive term to previous uni-modal scaling laws. We also find four empirical phenomena observed during the training, such as emergent coordinate-ascent style training that naturally alternates between modalities, guidelines for selecting critical hyper-parameters, and connections between mixed-modal competition and training stability. Finally, we test our scaling law by training a 30B speechtext model, which significantly outperforms the corresponding unimodal models. Overall, our research provides valuable insights into the design and training of mixed-modal generative models, an important new class of unified models that have unique distributional properties.



109

106

107

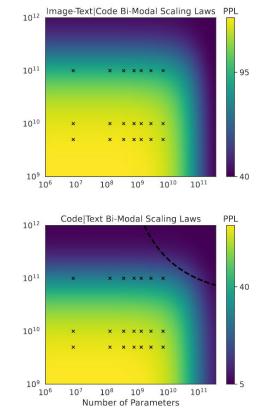
108

 10^{9}

Number of Parameters

1010

1011



Multilinguality: when does it help?

Different languages ~ very close modalities

Find close languages, and compute competition barrier

Or even start from a code or other language model, then fine-tune it, the same way ChatGPT is descended from a Python LM

RLHF

Instruct, Sparrow: ~50k human annotations

As easy in any language as in English

Questions?